Short heparin sequences spaced by glycol-split uronate residues are antagonists of fibroblast growth factor 2 and angiogenesis inhibitors.
نویسندگان
چکیده
Fibroblast Growth Factor-2 (FGF2) is a major inducer of neovascularization (angiogenesis). Heparin activates FGF2 by favoring formation of ternary complexes with its cellular receptors (FGFRs). Controlled 2-O-desulfation followed by exhaustive periodate oxidation/borohydride reduction has been used to generate sulfation gaps within the prevalent heparin sequences, building-up arrays of pentasulfated trisaccharides (PST, consisting of a 2-O-sulfated iduronic acid flanked by two N,6-disulfated glucosamines) spaced by reduced, glycol-split uronic acid (sU) residues. The structure of the prevalent sequences of the novel heparin derivative has been confirmed by mono- and two-dimensional NMR analysis. NMR spin-lattice relaxation times (T2) and nuclear Overhauser effects suggest that the sU residues act as flexible joints between the PST sequences and cause a marked distortion of the chain conformation of heparin required for formation of ternary complexes. Since the splitting reaction also occurs at the level of the essential glucuronic acid residue of the active site for antithrombin, the heparin derivative has no anticoagulant activity. However, it fully retains the FGF2-binding ability of the original heparin, as shown by its capacity to protect FGF2 from trypsin cleavage and to prevent the formation of heparan sulfate proteoglycan (HSPG)/FGF2/FGFR1 ternary complexes. However, when compared to heparin it showed a reduced capacity to induce FGF2 dimerization and to favor the interaction of [125I]FGF2 with FGFR1 in HSPG-deficient, FGFR1-transfected CHO cells. Accordingly, it was more effective than heparin in inhibiting the mitogenic activity exerted by FGF2 in cultured endothelial cells. Finally, it inhibited angiogenesis in a chick embrio chorioallantoic membrane (CAM) assay in which heparin is inactive.
منابع مشابه
Antiangiogenic heparin-derived heparan sulfate mimics*
Heparan sulfate (HS) is a glycosaminoglycan (GAG) widely distributed as a proteoglycan on the cell surface and in the extracellular matrix of animal tissues. Among other important physiological functions, its polysaccharide chains mediate cell proliferation by binding growth factors [fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF)], which are released in active form th...
متن کاملUndersulfated, low-molecular-weight glycol-split heparin as an antiangiogenic VEGF antagonist.
Vascular endothelial growth factor (VEGF) represents a target for antiangiogenic therapies in a wide spectrum of diseases, including cancer. As a novel strategy to generate nonanticoagulant antiangiogenic substances exploiting binding to VEGF while preventing receptor engagement, we assessed the VEGF-antagonist activity of a low-molecular-weight (LMW) compound (ST2184, Mw = 5800) generated by d...
متن کاملExploiting Surface Plasmon Resonance (SPR) Technology for the Identification of Fibroblast Growth Factor-2 (FGF2) Antagonists Endowed with Antiangiogenic Activity
Angiogenesis, the process of new blood vessel formation, is implicated in various physiological/pathological conditions, including embryonic development, inflammation and tumor growth. Fibroblast growth factor-2 (FGF2) is a heparin-binding angiogenic growth factor involved in various physiopathological processes, including tumor neovascularization. Accordingly, FGF2 is considered a target for a...
متن کاملHeparin octasaccharides inhibit angiogenesis in vivo.
BACKGROUND In previous experiments, we showed that heparin oligosaccharides inhibit the angiogenic cytokine fibroblast growth factor-2. Here, we present the first in vivo study of size-fractionated heparin oligosaccharides in four models of angiogenesis that are progressively less dependent on fibroblast growth factor-2. EXPERIMENTAL DESIGN Heparin oligosaccharides were prepared using size-ex...
متن کاملThe minimal active domain of endostatin is a heparin-binding motif that mediates inhibition of tumor vascularization.
Endostatin constitutes the COOH-terminal 20,000 Da proteolytic fragment of collagen XVIII and has been shown to possess antiangiogenic and antitumorigenic properties. In the present study, we have investigated the role of the heparin-binding sites in the in vivo mechanism of action of endostatin. The majority of the heparin binding is mediated by arginines 155/158/184/270 in endostatin, but the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 41 33 شماره
صفحات -
تاریخ انتشار 2002